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It is well-known that the profile of finite-amplitude waves in gas- 
dynamics is determined by non-linear effects and dissipative processes, 
In a rarefied plasma, where the free path of the particles is substan- 
tially greater than the~characteristic dimensions, it is often possible 
to neglect dissipative processes, and the wave profile ls formed under 
the influence of ~onlinear and dispersive effects the latter being con- 
nected with a departure from the linear wave dispersion law character- 
istic of ordinary gas dynamics. Taking dispersion effects into account 
leads to the "smearing out" of the wave profile, which compensates 
for twisting as a result of nonlinearity. Thus it is possible for station- 
ary waves of finite amplitude to exist and propagate without changing 
their form (isolated, periodic and shock waves with oscillatory struc- 
ture). Stationary waves have been studied fairly fully [1-6]. 
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conditions of the experiments [10] the "magnetic piston" moves in a 
direction which is not strictly perpendicular to the constant magnetic 
field. We thus introduce into the equations a certain effective angle 
ct between the plane of the piston and the magnetic field H0, Since 
in the process of moving the mass of plasma remains constant and 
also the magnetic pressure on the plasma-vacuum boundary is given, 
the calculation is most conveniently carried out in Lagrangian co- 
ordinates, In addition, we shatl assume that all quantities depend only 
on the radius r and the time t (one-dimensional problem). We may 
then write the basic system of equations in dimensionless variables in 
the form 
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Nonstationary waves of finite amplitude have been studied in a 
series of papers. For example, in [7] one of the authors investigated 
plane nonstationary waves of finite, hut small amplitude, propagating 
in a cold plasma both transverse to, as well as at an angle to a con- 
stant magnetic field (such waves have a different dispersion law). In 
[8. 9] plane waves of finite amplitude were investigated by means of 
numerical integration, neglecting dissipative processes. 

The present pape r carries out the calculation of nonstationary cy- 
lindrical waves propagating in a rarefied cold plasma situated in a 

strong magnetic field, 
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Here u, v, w are the radial, azimuthal and longitudinal velocity 
components, h t, H 2 the longitudinal and azimuthal magnetic field 
components, V the specific volume (No) is the initial density), Vo the 

Eulerian coordinate, and ~ the Lagrangian coordinate. Velocities are 
normalized by the Alfv[n velocity V a, corresponding to the initial 
values of  density and magnetic field, lengths are normalized by the 
radius of the cylinder a, the magnetic field by the initial field H0, 

The initial conditions are 
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The calculations were made on the assumptions formulated in [7], 
namely the pIasma is quasi-neutral Ni = N e, the kinetic gas pressure 
is neglected in comparison with the magnetic pressure p << 1t2/87r. 
and collisions between particles are also neglected. When t = 0. the 
plasma with density N = const fills a cylinder of radius a and is sit- 
uated in a uniform magnetic field II0 directed along the axis of the 
cylinder. Subsequently, the magnetic field on the boundary of the 
plasma cylinder begins to increase rapidly according to some law, As 
a result of this magnetic perturbations propagate towards the axis 
of the cylinder and the plasma column begins to be compressed under 
the action of the increasing magnetic pressure. Under the conditions 
of the experiments [10] the propagation of cylindrical waves is char- 
acterized by positive dispersion (see ['7]), i , e .  the harmrrnics with 
5hotter wavelength precede the main front which moves with roughly 
the AJfv6u velocity: in other w~,rds, the leadi~g wave fn)nt has an 
o:,ciJlatory srrlu:ture. T h i s  i~ asso~ Jatcd with the fact that ullder tile 
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The boundary conditions are 

Oh, "0 u(0, "C)= v(0, l ) = 0 ,  h2(0, T)=0, "~I ~ "r)=0, h2(t, T)=0, 

h* (t,~) = t + A l(T) (A = const). (3) 

Here f(r) is a given function of time. 
The system of equations (1), together with conditions (2) and (3), 

was solved numerically in finite differences, while in the solution the 
boundary function was taken in the form f( r )  = I - exp ( -wr) .  Ques- 
tions connected with the method of calculation will be dealt with 
separately. We only note here that the calculation was explicit, the 
time step being chosen from a knowledge of the stability of the differ- 
ence method, while at large amplitudes continuous transition through 
the discontinuities was achieved by introducing the artificial viscosity 
proposed by Neyman and Richtmeyer [11]. 

Figures 1-4  give some of the results obtained. We were basically 
interested in the structure of the magnetic field when it met and was 
reflected from the axis of the cylinder. Figure 1 shows the propagation 
of the magnetic disturbance for times which are not large, In accord- 
ance with the positive law of dispersion the leading front of the wave 
has an oscillatory character, while the total field in some places is 
less than the unperturbed field "rarefaction" wave, The dimension of 
these oscillations is equal in order of magnitude to the dispersion 
length ce~/~o0i, and their amplitude grows in time, 

Figure 2 shows the wave profile shortly after the field begins to 
increase on the boundary of the plasma filament for two different dis- 
persion lengths. The longer the dispersion length, the higher the os- 
cillations, their amplitude is somewhat larger and their number is 
also greater. Figures 3 and 4 give the profile of the magnetic field 
at the time most suitable for revealing the characteristic stages of the 
process for two values of the amplitude A of the magnetic field on 
the plasma-vacuum boundary. The main wave front moves with 
roughly the Alfvgn velocity 'Ca, which naturally increases as the am- 
plitude of the magnetic field on the boundary increases. 

It is clear from Figs. 3 and 4 that for comparatively short times 
when the main front has not yet reached the axis, the leading os- 
cillations have dimensions of the order of the dispersion length, and 
the amplitude is fairly large. 

At subsequent moments of time the wave velocity increases, In- 
sofar as the field strength increases as the axis of the cylinder is ap- 
proached, a cumulative process occurs in which the magnetic field 
close to the axis increases significantly compared with the field on 

the boundary of the plasma filament, and subsequently reflection of 
the wave from the axis takes place. The motion of the reflected 
wave accompanied by the leading oscillations was traced almost to 
the moment of "collision" with the moving plasma boundary. 

Calculations are now being carried out for conditions which are 
as close as possible to those which exist in experiments. 

Finally, the author thanks R. Z. Sagdeev, V. I. Karpman, N. N. 
Yanenko, and Yu, E. Nesterikhin for consukation and advice, and 
also G. A. Grozdov for help in the numerical calculations. 
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